logo

Wake up daily to our latest coverage of business done better, directly in your inbox.

logo

Get your weekly dose of analysis on rising corporate activism.

logo

The best of solutions journalism in the sustainability space, published monthly.

Select Newsletter

By signing up you agree to our privacy policy. You can opt out anytime.

RP Siegel headshot

TriplePundit Sponsored Series

Energy Options: Pros and Cons

Geothermal Energy: Pros and Cons

By RP Siegel
geothermal-power.jpg

The core of the Earth, some 4,000 miles beneath its surface, is a fiery morass of superheated gas and molten rock which exists at roughly 7200 degrees Fahrenheit. That temperature is maintained by the decay of radioactive particles located within the Earth’s core. Technically, one could say that geothermal power is a form of nuclear power, though with far different implications from nuclear power as we know it, since these reactions occur in a containment vessel with walls thousands of miles thick. Even so, we still get things like uranium and radon gas, seeping up to the surface.

Moving away from the core, the temperature cools down to the point where it might be 1500 degrees, fifty miles down and 3-400 degrees, three to four miles below the surface. Since the Earth is not at all uniform, these results will vary. There will be some places where the crust is thinner than others, which means the hotter temperatures will be closer to the surface. Hot springs, geysers and, of course, volcanoes can often be found in these places. The Earth’s crust varies from roughly 20 to 40 miles thick as measured from the surface. (It is thinner beneath the sea.)

The amount of thermal energy contained in the Earth’s crust is enormous. Experts estimate it at an equivalent of 79 million billion barrels of oil, or roughly 15,000 times more than estimated worldwide oil reserves. And unlike oil, much of that heat is continually replenished. The hydrothermal resource base (found in hot springs, etc.) has been estimated at 100,000 MW or more.

Geothermal resources vary from location to location, but as new technologies emerge that are capable of utilizing lower temperatures, geothermal power will become more widespread. Iceland, already generates more than 25 percent of its energy from geothermal.

A major new project was recently announced in Kenya.

So how do you produce electricity from this abundant source? It actually almost as simple as drilling a hole in the ground, sending water down, having steam come up and running that steam through a turbine. There are of course many nuances. You can see a nice presentation here.

Geothermal power, like solar thermal power, can also be harnessed for low intensity heat at shallower depths, which can be used for space and water heating and cooling.

So what are some of the pros and cons?

Pros


  • Almost entirely emission free

  • Zero carbon

  • The process can scrub out sulfur that might have otherwise been released

  • No fuel required (no mining or transportation)

  • Not subject to the same fluctuations as solar or wind

  • Smallest land footprint of any major power source

  • Virtually limitless supply

  • Inherently simple and reliable

  • Can provide base load or peak power

  • Already cost competitive in some areas

  • Could be built underground

  • Some level of geothermal energy available most places

  • New technologies show promise to utilize lower temperatures
Cons

  • Prime sites are very location-specific

  • Prime sites are often far from population centers

  • Losses due to long distance transmission of electricity

  • Water usage

  • Sulfur dioxide and silica emissions

  • High construction costs

  • Drilling into heated rock is very difficult

  • Minimum temperature of 350F+  generally required

  • Care must be taken to manage heat and not overuse it

All in all, this is a very positive balance. There is certainly a lot of potential here and one would expect to see a growing number of systems emerging around the world in places where the resource is abundant.

***

What about other energy sources?


[Image credit: Eyeline-imagery: Flickr Creative Commons]

RP Siegel, PE, is the President of Rain Mountain LLC. He is also the co-author of the eco-thriller Vapor Trails, the first in a series covering the human side of various sustainability issues including energy, food, and water in an exciting and entertaining format. Now available on Kindle.

Follow RP Siegel on Twitter.

RP Siegel headshot

RP Siegel (1952-2021), was an author and inventor who shined a powerful light on numerous environmental and technological topics. His work appeared in TriplePundit, GreenBiz, Justmeans, CSRWire, Sustainable Brands, Grist, Strategy+Business, Mechanical Engineering,  Design News, PolicyInnovations, Social Earth, Environmental Science, 3BL Media, ThomasNet, Huffington Post, Eniday, and engineering.com among others . He was the co-author, with Roger Saillant, of Vapor Trails, an adventure novel that shows climate change from a human perspective. RP was a professional engineer - a prolific inventor with 53 patents and President of Rain Mountain LLC a an independent product development group. RP was the winner of the 2015 Abu Dhabi Sustainability Week blogging competition. RP passed away on September 30, 2021. We here at TriplePundit will always be grateful for his insight, wit and hard work.

 

Read more stories by RP Siegel